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What is a diagram algebra? 3/39

I Roughly speaking:

I diagram algebra = complex vector space of formal linear combinations
of diagrams.

I multiplication = graphical operation on diagrams that is extended to
linear combinations.
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What is a diagram algebra? 4/39

I In this talk, diagrams will typically be partition diagrams on k upper and k
lower points.

I The diagram above depicts the partition of

{{1, 2, 3, 4}, {5, 1′}, {6, 8}, {7, 8′}, {2′, 4′}, {3′}, {5′, 7′}, {6′}}.

I Part(k) = {partition diagrams on k upper and k lower points }, k ≥ 0.
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Multiplication of partitions 5/39

I Partition diagrams can be multiplied by vertical concatenation and
connecting lines.

Multiplication of two partitions p, q ∈ Part(6) yielding p · q ∈ Part(6).
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What is a diagram algebra? 6/39

Let S ⊂ Part(k) be closed under multiplication of diagrams and let δ ∈ C.

I k-th diagram algebra of (S, δ):

A(S,δ)(k) =

∑
p∈S

ap ep ; ap ∈ C


= complex free vector spanned by basis {ep ; p ∈ S}.

I Multiplication:
ep · eq = δ#erased blocks in p·q ep·q.
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Example from before 7/39

Here, we have erased one block, thus ep · eq = δ ep·q .
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Examples of diagram algebras 8/39

I S = Part(k):

A(S,δ)(k) = Partition algebras (studied by Jones ’94, Martin ’96).

I S = {diagr. s. t. every upper point is matched with exactly one lower point}:

A(S,δ)(k) = C[Sk].

Diagram corresponding to the permutation (1243).
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Examples of diagram algebras 9/39

I S = {diagrams with blocks of size 2} ⊂ Part(k):

A(S,δ)(k) = Brδ(k) = Brauer algebras (Brauer ’37, Wenzl ’88).

I S = {noncrossing diagrams with blocks of size 2} ⊂ Part(k):

A(S,δ)(k) = TLδ(k) = Temperley-Lieb algebras (Jones ’83).
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Examples of diagram algebras 10/39

I Motzkin algebras (nc. blocks of size one or two, Benkart-Halverson ’11);

I Fuss-Catalan algebras (nc. blocks of even size, Bisch-Jones ’95);

I walled Brauer algebras (Turaev ’89, Koike ’89, Nikitin ’07).
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Diagram algebras and representation theory 11/39

I The first examples of diagram algebras were introduced in order to describe
centralizers of tensor product representations of compact groups.

Examples:
I Consider the standard representation

π : Sn → L(Cn)

of the symmetric group Sn on Cn.
Then, the centralizer of the tensor product representation

π⊗k : Sn → L((Cn)⊗k),

is
EndSn((Cn)⊗k) ∼= Partδ=n(k) for 2k ≤ n+ 1.
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Diagram algebras and representation theory 12/39

I The first examples of diagram algebras were introduced in order to describe
centralizers of tensor product representations of compact groups.

Examples:
I Consider the standard representation

π : On → L(Cn)

of the orthogonal group On on Cn.
Then, the centralizer of the tensor product representation

π⊗k : On → L((Cn)⊗k),

is
EndOn((Cn)⊗k) ∼= Brδ=n(k) for k < n.
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Diagram algebras and quantum groups 13/39

Examples:
I Consider the standard representation of the special unitary group

SU(2)→ L(C2).

Then for the tensor product representation

π⊗k : SU(2)→ L((C2)⊗k),

we have

EndSU(2)((C2)⊗k) ∼= TLδ=2(k) for all k ≥ 0.

I This remains true when SU(2) is q-deformed to the quantum group
SUq(2), q ∈ (0, 1], when we choose δ = q + q−1.
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Diagram algebras and easy/partition quantum groups 14/39

I This procedure can be ’inverted’ (Banica-Speicher ’09):

for every diagram algebra A(S,δ)(k) mentioned so far, one can construct a
easy/partition quantum group Gn such that tensor products of its standard
respresentation satisfy

EndGn((Cn)⊗k) ∼= A(S,δ=n)(k)

for a properly chosen range of k (relative to n).
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Diagram algebra vs. quantum groups 15/39

diagram algebras centralizer of

Brauer On

Partition Sn, S
′
n = Z2 × Sn

rook Brauer Bn, B
′
n = Z2 ×Bn

Orellana Hn

walled Brauer O∗n

Temperley-Lieb TLδ=n(k) O+
n

Temperley-Lieb TLδ=
√
n(2k) S+

n , S
+′
n

Motzkin B+
n , B

+′
n

2-Fuss-Catalan H+
n

Weber B#+
n
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Semisimplicity 16/39

I Every diagram algebra A(S,δ)(k) that arises from the Banica-Speicher
framework of categories of partitions, is semisimple for all but finitely many
values of δ ∈ C.

I What are the exact exceptional values for δ?

I For TLδ(k): {2 cos(jπ/k), 0 ≤ j ≤ k} (Jones, Goodman-Wenzl ’02)

I For centralizers of easy groups (e.g. Brauer or partition algebra):

{exceptional} ⊂ Z

(see e.g Flake-Maaßen ’20).
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A return to the symmetric groups 17/39

I The Young graph encodes a lot of information on the representation theory
of the symmetric groups Sn.

The Young graph Y: the branching graph of S1 ⊂ S2 ⊂ S3 ⊂ . . .
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A return to the symmetric groups 18/39

I The nodes (Young diagrams) on the n-level enumerate the irreducible
representations of Sn.

I Edges encode decomposition under restriction to Sn−1.

I Example: As representations of S2, we have

Π ∼= Π ⊕Π .
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A return to the symmetric groups 19/39

I The Young graph also encodes the dimensions of the reps:

dim(ΦD) = number of paths from root to D.

I Example:

dim
(

Π
)

= 3.
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Towers of diagram algebras 20/39

The diagram algebras, we have seen so far depended on

I a positive integer k ≥ 0, the number of upper and lower points of the
diagrams;

I the type of diagrams we allowed, e.g. we had
S = { diagrams with blocks of size two};

I a loop parameter δ ∈ C which we now assume to be generic.
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The branching graph 21/39

I If we fix (S, δ), we get a whole tower of diagram algebras

A(S,δ)(0) ⊂ A(S,δ)(1) ⊂ A(S,δ)(2) ⊂ . . .

where, on the level of partitions, we embed by adding a string to the right,
e.g.

I We can derive the associated branching graph / Bratteli diagram by
computing the representation theory of the algebras.
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Examples 22/39

I Branching graph of · · · ⊂ TLδ(k) ⊂ . . . (noncrossing pairs)
= semi-Pascal graph (Jones):

I Branching graph of · · · ⊂ Moδ(k) ⊂ . . . (nc. pairs and singletons,
Halverson-Benkart):
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Pascalization 23/39

I For other diagram algebras, the branching graphs become increasingly
inconvenient to draw.

I Luckily, there is a more condensed way of describing them:

I they all arise by a process dubbed pascalization (Vershik, Nikitin) from
smaller graphs, their principal graphs (Jones).
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The Pascal graph 24/39

I To describe this process, let us have a look at the Pascal graph P .

I Paths on Pascal graphs are trajectories of a walker on Z starting at 0.

I P is the pascalization of Z, i.e. P = P(Z).
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Pascalization in the noncrossing case 25/39

I semi-Pascal graph (. . . ⊂ TLδ(k) ⊂ . . . ):

I sP = P(N).

I Alternative interpretation as Ballot paths on N× N (useful for path
counting).
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Pascalization in the noncrossing case 26/39

I Motzkin graph (· · · ⊂ Moδ(k) ⊂ . . . ):

I Pascalization of the ladder:

I Alternative interpretations as
I Lazy walks on the half-line N;

I Motzkin paths on N× N (useful for path counting).
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Other principal graphs in the noncrossing case 27/39

I The Fibonacci tree (Fuss-Catalan algebras),

I the derooted Fibonacci tree
(diagram algebras described by Weber whose ’dual’ quantum groups are
the freely modified bistochastic quantum groups B#+

N ).
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Principal graphs in the crossing case 28/39

diagram algebra centralizer of principal graph

Brauer algebras On Young graph

Partition algebras Sn repeated Young graph

rook Brauer algebras Bn laddered Young graph

Orellana algebras Hn coupled Young graph

walled Brauer algebras O∗n doubled Young graph
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Traces and central measures 29/39

Given a tower of diagram algebras

A(S,δ)(0) ⊂ A(S,δ)(1) ⊂ A(S,δ)(2) ⊂ · · · ⊂ A(S,δ)(∞),

there is a natural one-to-one correspondence between

I tracial states τ on the direct limit algebra A(S,δ)(∞) and

I measures on the associated branching graph (called central measures)
satisfying a consistency condition that reflects the restriction consistency
of traces (

τ |A(S,δ)(n+1)

) ∣∣∣∣
A(S,δ)(n)

= τ |A(S,δ)(n).
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Consistency of central measures 30/39

I Central measure on branching graph = measure on the space of infinite
rooted paths

Ω = {∅ = ω0 ↗ ω1 ↗ ω2 . . . }.

I Consistency: conditioned on arriving at some ω̃ at the n-th step, all paths
from the root to ω̃ have been taken with the same probability.

P
(
↗ ↗

∣∣∣∣ω2 =
)

= P
(
↗ ↗

∣∣∣∣ω2 =
)

=
1

2
.
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Extremal central measures 31/39

I The set of central measures forms a Choquet simplex, i.e. every central
measure can be uniquely represented by a probability measure over its
extreme points.

I Problem:

Compute the minimal boundary of the branching graph, i.e. its extremal
central measures.

I For the Young graph, the classification of extremal central measures is
known as Thoma’s theorem.

I T = set of sequences ((αn)n≥1; (βn)n≥1) ∈ [0, 1]∞ × [0, 1]∞ such that

α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0,

∞∑
n=1

(αn + βn) ≤ 1.
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Minimal boundary in the crossing case 32/39

diagram
algebra

centralizer
of

principal
graph

boundary
principal

graph

boundary
pascalized

graph

Brauer On Young graph T T

Partition Sn repeated Young graph T T

rook Brauer Bn laddered Young graph T T

Orellana Hn coupled Young graph T T?

walled Brauer O∗n doubled Young graph T × T T × T
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Minimal boundary in the noncrossing case 33/39

diagram algebra centralizer of principal graph
boundary
pascalized

graph

Temperley-Lieb O+
n , S

+
n N [0, 1]

Motzkin B+
n ladder

λ1, λ2 s.t.
0 ≤ λ2 ≤ λ1 ≤ 1,
0 ≤ λ1 + λ2 ≤ 1

2-Fuss-Catalan H+
n Fibonacci tree

[0, 4/27]×
{Fibonacci words}*

Weber B#+
n

derooted
Fibonacci tree

[0, 4/27]×
{Fibonacci words}*

*Fibonacci word = word in a, b starting in a s.t. b is always followed by a.
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Diagram algebras in statistical physics 34/39

Consider the O(1)-loop model with closed boundary conditions on a
semi-infinite strip of width 2k:

where every tile is independently drawn with probabilities

P
( )

= p and P
( )

= 1− p.
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Diagram algebras in statistical physics 35/39

I To every configuration of this model, one can associate a boundary
matching:

boundary matching of loop model configuration

I Denote by Ma(2k) the set of matchings (noncrossing pairs on a line);

I Denote by V the space of complex linear combinations of matchings
Vk = {

∑
m∈Ma(2k) amem ; am ∈ C} with basis {em, m ∈ Ma(2k)};
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Diagram algebras in statistical physics 36/39

I Then, the Temperley-Lieb algebra TLδ=1(2k) (noncrossing pairs) acts on
matchings and thus on the space Vk.

I Denote by ψ(m) the probability that the boundary matching in the
O(1)-loop model is m ∈ Ma(2k).

I Consider the vector ψk =
∑

m∈Ma(2k) ψ(m)em ∈ Vk,

I and the Jones projections fi ∈ TLδ=1(2k), i = 1, . . . 2k − 1.

The Jones projection f4 ∈ TLδ=1(6).
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The Razumov-Stroganov conjecture 37/39

I Then, ψk is invariant under the Temperley-Lieb Hamiltonian(
2k−1∑
i=1

fi

)
ψk = ψk.

I Fascinatingly, all values ψk(m) are integer multiples of the smallest value.

I The description of these integers is the content of the Razumov-Stroganov
conjecture for the closed boundary condition.

I This conjecture asserts that these integer enumerates fully packed loops
and vertically symmetric alternating sign matrices.
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The Razumov-Stroganov conjecture 38/39

I For many other boundary conditions (relating to other types of
Temperley-Lieb algebras, e.g affine), this conjecture has been proven by
Cantini-Sportiello ’10.

I There are also loop models for the Brauer, the Motzkin and the
Fuss-Catalan algebra.

I For the Brauer algebra, there is a similar integer multiplicity phenomenon,
relating the model to the degree of certain algebraic varieties (Nienhuis ’04,
Knutson and Zinn-Justin ’05).
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Thanks for

listening!
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