

An introduction to diagram algebras

Jonas Wahl

Hausdorff Center for Mathematics, University of Bonn

October 25, 2021

- Roughly speaking:
 - diagram algebra = complex vector space of formal linear combinations of diagrams.
 - multiplication = graphical operation on diagrams that is extended to linear combinations.

▶ In this talk, diagrams will typically be **partition diagrams** on *k* upper and *k* lower points.

The diagram above depicts the partition of

$$\{\{1,2,3,4\},\{5,1'\},\{6,8\},\{7,8'\},\{2',4'\},\{3'\},\{5',7'\},\{6'\}\}.$$

 $ightharpoonup \operatorname{Part}(k) = \{ \operatorname{partition diagrams on } k \operatorname{ upper and } k \operatorname{ lower points } \}, \ k \geq 0.$

► In this talk, diagrams will typically be **partition diagrams** on *k* upper and *k* lower points.

▶ The diagram above depicts the partition of

$$\{\{1,2,3,4\},\{5,1'\},\{6,8\},\{7,8'\},\{2',4'\},\{3'\},\{5',7'\},\{6'\}\}.$$

▶ $Part(k) = \{partition diagrams on k upper and k lower points \}, k \ge 0.$

Partition diagrams can be multiplied by vertical concatenation and connecting lines.

Multiplication of two partitions $p, q \in Part(6)$ yielding $p \cdot q \in Part(6)$.

Let $S \subset Part(k)$ be closed under multiplication of diagrams and let $\delta \in \mathbb{C}$.

▶ k-th diagram algebra of (S, δ) :

$$A_{(\mathcal{S},\delta)}(k) = \left\{ \sum_{p \in \mathcal{S}} a_p \ e_p \ ; \ a_p \in \mathbb{C} \right\}$$

- = complex free vector spanned by basis $\{e_p \; ; \; p \in \mathcal{S}\}$.
- ► Multiplication:

$$e_p \cdot e_q = \delta^{\# \text{erased blocks in } p \cdot q} \; e_{p \cdot q}.$$

Here, we have erased one block, thus $e_p \cdot e_q = \delta \; e_{p \cdot q}.$

 \triangleright $\mathcal{S} = \operatorname{Part}(k)$:

$$A_{(\mathcal{S},\delta)}(k)=$$
 Partition algebras (studied by Jones '94, Martin '96).

 $ightharpoonup \mathcal{S} = \{ ext{diagr. s. t. every upper point is matched with exactly one lower point} \}:$

$$A_{(\mathcal{S},\delta)}(k) = \mathbb{C}[S_k].$$

Diagram corresponding to the permutation (1243).

▶ $S = \{\text{diagrams with blocks of size } 2\} \subset Part(k)$:

$$A_{(\mathcal{S},\delta)}(k)=\operatorname{Br}_{\delta}(k)=$$
 Brauer algebras (Brauer '37, Wenzl '88).

 $ightharpoonup \mathcal{S} = \{ ext{noncrossing} \text{ diagrams with blocks of size } 2 \} \subset \operatorname{Part}(k)$:

$$A_{(\mathcal{S},\delta)}(k)=\mathrm{TL}_{\delta}(k)=$$
 Temperley-Lieb algebras (Jones '83).

- ▶ Motzkin algebras (nc. blocks of size one or two, Benkart-Halverson '11);
- ► Fuss-Catalan algebras (nc. blocks of even size, Bisch-Jones '95);
- ▶ walled Brauer algebras (Turaev '89, Koike '89, Nikitin '07).

► The first examples of diagram algebras were introduced in order to describe *centralizers* of tensor product representations of compact groups.

Examples:

Consider the standard representation

$$\pi: S_n \to L(\mathbb{C}^n)$$

of the symmetric group S_n on \mathbb{C}^n .

Then, the centralizer of the tensor product representation

$$\pi^{\otimes k}: S_n \to L((\mathbb{C}^n)^{\otimes k}),$$

is

$$\operatorname{End}_{S_n}((\mathbb{C}^n)^{\otimes k}) \cong \operatorname{Part}_{\delta=n}(k)$$
 for $2k \leq n+1$.

► The first examples of diagram algebras were introduced in order to describe centralizers of tensor product representations of compact groups.

Examples:

► Consider the standard representation

$$\pi: O_n \to L(\mathbb{C}^n)$$

of the orthogonal group O_n on \mathbb{C}^n .

Then, the centralizer of the tensor product representation

$$\pi^{\otimes k}: O_n \to L((\mathbb{C}^n)^{\otimes k}),$$

is

$$\operatorname{End}_{O_n}((\mathbb{C}^n)^{\otimes k}) \cong \operatorname{Br}_{\delta=n}(k)$$
 for $k < n$.

Examples:

Consider the standard representation of the special unitary group

$$SU(2) \to L(\mathbb{C}^2).$$

Then for the tensor product representation

$$\pi^{\otimes k}: SU(2) \to L((\mathbb{C}^2)^{\otimes k}),$$

we have

$$\operatorname{End}_{SU(2)}((\mathbb{C}^2)^{\otimes k}) \cong \operatorname{TL}_{\delta=2}(k)$$
 for all $k \geq 0$.

This remains true when SU(2) is q-deformed to the quantum group $SU_q(2),\ q\in(0,1],$ when we choose $\delta=q+q^{-1}.$

Examples:

Consider the standard representation of the special unitary group

$$SU(2) \to L(\mathbb{C}^2).$$

Then for the tensor product representation

$$\pi^{\otimes k}: SU(2) \to L((\mathbb{C}^2)^{\otimes k}),$$

we have

$$\operatorname{End}_{SU(2)}((\mathbb{C}^2)^{\otimes k}) \cong \operatorname{TL}_{\delta=2}(k)$$
 for all $k \geq 0$.

▶ This remains true when SU(2) is q-deformed to the quantum group $SU_q(2), \ q \in (0,1],$ when we choose $\delta = q + q^{-1}.$

This procedure can be 'inverted' (Banica-Speicher '09):

for every diagram algebra $A_{(\mathcal{S},\delta)}(k)$ mentioned so far, one can construct a **easy/partition** quantum group G_n such that tensor products of its standard respresentation satisfy

$$\operatorname{End}_{G_n}((\mathbb{C}^n)^{\otimes k}) \cong A_{(\mathcal{S},\delta=n)}(k)$$

for a properly chosen range of k (relative to n).

diagram algebras	centralizer of	
Brauer	O_n	
Partition	$S_n, S_n' = \mathbb{Z}_2 \times S_n$	
rook Brauer	$B_n, B_n' = \mathbb{Z}_2 \times B_n$	
Orellana	H_n	
walled Brauer	O_n^*	
Temperley-Lieb $\mathrm{TL}_{\delta=n}(k)$	O_n^+	
Temperley-Lieb $\mathrm{TL}_{\delta=\sqrt{n}}(2k)$	$S_n^+, S_n^{+'}$	
Motzkin	$B_n^+, B_n^{+'}$	
2-Fuss-Catalan	H_n^+	
Weber	$B_n^{\#+}$	

- Every diagram algebra $A_{(\mathcal{S},\delta)}(k)$ that arises from the Banica-Speicher framework of categories of partitions, is semisimple for **all but finitely many** values of $\delta \in \mathbb{C}$.
- ▶ What are the exact exceptional values for δ ?
 - For $\mathrm{TL}_{\delta}(k)$: $\{2\cos(j\pi/k), 0 \leq j \leq k\}$ (Jones, Goodman-Wenzl '02)
 - For centralizers of easy groups (e.g. Brauer or partition algebra):

$$\{exceptional\} \subset \mathbb{Z}$$

(see e.g Flake-Maaßen '20).

▶ The **Young graph** encodes a lot of information on the representation theory of the symmetric groups S_n .

The Young graph \mathbb{Y} : the branching graph of $S_1 \subset S_2 \subset S_3 \subset \dots$

- ▶ The nodes (Young diagrams) on the n-level enumerate the irreducible representations of S_n .
- ▶ Edges encode decomposition under restriction to S_{n-1} .
- **Example**: As representations of S_2 , we have

$$\Pi_{\square}\cong\Pi_{\square}\oplus\Pi_{\square}.$$

► The Young graph also encodes the dimensions of the reps:

 $\dim(\Phi_D) = \text{ number of paths from root to } D.$

Example:

$$\dim\left(\Pi_{\square\square}\right)=3.$$

The diagram algebras, we have seen so far depended on

- ightharpoonup a positive integer $k\geq 0$, the number of upper and lower points of the diagrams;
- ▶ the type of diagrams we allowed, e.g. we had $S = \{$ diagrams with blocks of size two $\}$;
 - a loop parameter $\delta \in \mathbb{C}$ which we now assume to be generic.

• If we fix (S, δ) , we get a whole tower of diagram algebras

$$A_{(\mathcal{S},\delta)}(0) \subset A_{(\mathcal{S},\delta)}(1) \subset A_{(\mathcal{S},\delta)}(2) \subset \dots$$

where, on the level of partitions, we embed by adding a string to the right, e.g.

► We can derive the associated **branching graph** / **Bratteli diagram** by computing the representation theory of the algebras.

Examples 22/39

▶ Branching graph of $\cdots \subset \mathrm{TL}_{\delta}(k) \subset \ldots$ (noncrossing pairs) = $semi-Pascal\ graph$ (Jones):

▶ Branching graph of $\cdots \subset \mathrm{Mo}_{\delta}(k) \subset \cdots$ (nc. pairs and singletons, Halverson-Benkart):

Pascalization 23/39

► For other diagram algebras, the branching graphs become increasingly inconvenient to draw.

- Luckily, there is a more condensed way of describing them:
- they all arise by a process dubbed pascalization (Vershik, Nikitin) from smaller graphs, their principal graphs (Jones).

ightharpoonup To describe this process, let us have a look at the *Pascal graph* \mathcal{P} .

- ▶ Paths on Pascal graphs are trajectories of a walker on \mathbb{Z} starting at 0.
- $ightharpoonup \mathcal{P}$ is the pascalization of \mathbb{Z} , i.e. $\mathcal{P} = \mathcal{P}(\mathbb{Z})$.

▶ semi-Pascal graph $(... \subset \mathrm{TL}_{\delta}(k) \subset ...)$:

- $ightharpoonup s\mathcal{P} = \mathcal{P}(\mathbb{N}).$
- Alternative interpretation as *Ballot paths* on $\mathbb{N} \times \mathbb{N}$ (useful for path counting).

▶ Motzkin graph (· · · \subset Mo $_{\delta}(k) \subset$. . .):

Pascalization of the ladder:

- Alternative interpretations as
 - ▶ Lazy walks on the half-line \mathbb{N} ;
 - ▶ *Motzkin paths* on $\mathbb{N} \times \mathbb{N}$ (useful for path counting).

- ► The Fibonacci tree (Fuss-Catalan algebras),
- the **derooted Fibonacci tree** (diagram algebras described by Weber whose 'dual' quantum groups are the freely modified bistochastic quantum groups $B_N^{\#+}$).

diagram algebra	centralizer of	principal graph
Brauer algebras	O_n	Young graph
Partition algebras	S_n	repeated Young graph
rook Brauer algebras	B_n	laddered Young graph
Orellana algebras	H_n	coupled Young graph
walled Brauer algebras	O_n^*	doubled Young graph

Given a tower of diagram algebras

$$A_{(\mathcal{S},\delta)}(0) \subset A_{(\mathcal{S},\delta)}(1) \subset A_{(\mathcal{S},\delta)}(2) \subset \cdots \subset A_{(\mathcal{S},\delta)}(\infty),$$

there is a natural one-to-one correspondence between

- \blacktriangleright tracial states τ on the direct limit algebra $A_{(\mathcal{S},\delta)}(\infty)$ and
- measures on the associated branching graph (called central measures) satisfying a consistency condition that reflects the restriction consistency of traces

$$\left(\tau|_{A_{(\mathcal{S},\delta)}(n+1)}\right)\bigg|_{A_{(\mathcal{S},\delta)}(n)} = \tau|_{A_{(\mathcal{S},\delta)}(n)}.$$

Central measure on branching graph = measure on the space of infinite rooted paths

$$\Omega = \{\emptyset = \omega_0 \nearrow \omega_1 \nearrow \omega_2 \dots \}.$$

▶ **Consistency**: conditioned on arriving at some $\tilde{\omega}$ at the n-th step, all paths from the root to $\tilde{\omega}$ have been taken with the same probability.

► The set of central measures forms a Choquet simplex, i.e. every central measure can be uniquely represented by a probability measure over its extreme points.

Problem:

Compute the **minimal boundary** of the branching graph, i.e. its **extremal central measures**.

- ► For the Young graph, the classification of extremal central measures is known as **Thoma's theorem**.
- ▶ T = set of sequences $((\alpha_n)_{n\geq 1}; (\beta_n)_{n\geq 1}) \in [0,1]^\infty \times [0,1]^\infty$ such that

$$\alpha_1 \ge \alpha_2 \ge \dots \ge 0, \ \beta_1 \ge \beta_2 \ge \dots \ge 0, \ \sum_{n=1}^{\infty} (\alpha_n + \beta_n) \le 1.$$

diagram algebra	centralizer of	principal graph	boundary principal graph	boundary pascalized graph
Brauer	O_n	Young graph	T	T
Partition	S_n	repeated Young graph	T	T
rook Brauer	B_n	laddered Young graph	T	T
Orellana	H_n	coupled Young graph	T	<i>T</i> ?
walled Brauer	O_n^*	doubled Young graph	$T \times T$	$T \times T$

diagram algebra	centralizer of	principal graph	boundary pascalized graph
Temperley-Lieb	O_n^+, S_n^+	N	[0, 1]
Motzkin	B_n^+	ladder	$\lambda_1, \lambda_2 \text{ s.t.}$ $0 \le \lambda_2 \le \lambda_1 \le 1,$ $0 \le \lambda_1 + \lambda_2 \le 1$
2-Fuss-Catalan	H_n^+	Fibonacci tree	$ [0,4/27] \times \\ \{ \text{Fibonacci words} \}^* $
Weber	$B_n^{\#+}$	derooted Fibonacci tree	

^{*}Fibonacci word = word in a,b starting in a s.t. b is always followed by a.

hcm HAUSDORFF CENTE Consider the O(1)-loop model with closed boundary conditions on a semi-infinite strip of width 2k:

where every tile is independently drawn with probabilities

$$\mathbb{P}(\overset{\bullet}{\Sigma}) = p$$

$$\mathbb{P}(\stackrel{\triangleright}{\square}) = p$$
 and $\mathbb{P}(\stackrel{\triangleright}{\square}) = 1 - p$.

To every configuration of this model, one can associate a boundary matching:

boundary matching of loop model configuration

- lackbox Denote by $\mathrm{Ma}(2k)$ the set of matchings (noncrossing pairs on a line);
- ▶ Denote by V the space of complex linear combinations of matchings $V_k = \{\sum_{m \in \operatorname{Ma}(2k)} a_m e_m \; ; \; a_m \in \mathbb{C} \}$ with basis $\{e_m, \; m \in \operatorname{Ma}(2k)\}$

To every configuration of this model, one can associate a boundary matching:

boundary matching of loop model configuration

- lackbox Denote by $\mathrm{Ma}(2k)$ the set of matchings (noncrossing pairs on a line);
- Denote by V the space of complex linear combinations of matchings $V_k = \{\sum_{m \in \operatorname{Ma}(2k)} a_m e_m \; ; \; a_m \in \mathbb{C} \}$ with basis $\{e_m, \; m \in \operatorname{Ma}(2k)\}$

To every configuration of this model, one can associate a boundary matching:

boundary matching of loop model configuration

- lacktriangle Denote by $\mathrm{Ma}(2k)$ the set of matchings (noncrossing pairs on a line);
- ▶ Denote by V the space of complex linear combinations of matchings $V_k = \{\sum_{m \in \operatorname{Ma}(2k)} a_m e_m \; ; \; a_m \in \mathbb{C} \}$ with basis $\{e_m, \; m \in \operatorname{Ma}(2k)\};$

- ▶ Then, the Temperley-Lieb algebra $\mathrm{TL}_{\delta=1}(2k)$ (noncrossing pairs) acts on matchings and thus on the space V_k .
- ▶ Denote by $\psi(m)$ the probability that the boundary matching in the O(1)-loop model is $m \in Ma(2k)$.
- ▶ Consider the vector $\psi_k = \sum_{m \in \mathrm{Ma}(2k)} \psi(m) e_m \in V_k$,
- ▶ and the Jones projections $f_i \in TL_{\delta=1}(2k), i=1,\dots 2k-1$.

The Jones projection $f_4 \in TL_{\delta=1}(6)$.

lacktriangle Then, ψ_k is invariant under the **Temperley-Lieb Hamiltonian**

$$\left(\sum_{i=1}^{2k-1} f_i\right) \psi_k = \psi_k.$$

- Fascinatingly, all values $\psi_k(m)$ are **integer multiples** of the smallest value.
- The description of these integers is the content of the Razumov-Stroganov conjecture for the closed boundary condition.
- This conjecture asserts that these integer enumerates fully packed loops and vertically symmetric alternating sign matrices.

- For many other boundary conditions (relating to other types of Temperley-Lieb algebras, e.g affine), this conjecture has been proven by Cantini-Sportiello '10.
- ► There are also loop models for the Brauer, the Motzkin and the Fuss-Catalan algebra.
- ► For the **Brauer algebra**, there is a similar integer multiplicity phenomenon, relating the model to the degree of certain algebraic varieties (Nienhuis '04, Knutson and Zinn-Justin '05).

Thanks for listening!